THE MAXWELL-HEAVISIDE EQUATIONS
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ABSTRACT

According to the gravitoelectromagnetic descriptod the gravitational phenomena, the
Maxwell-Heaviside equations (GEM equations) govdra gravitational field. In this
article these equations are mathematically deduitech the kinematics of the
“informatons”, that — according to the “theory offormatons” - are the constituent
elements of that field. It is also shown that tBEM equations are mathematically
consistent and that they imply the existence afigmtional waves.
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THE MAXWELL-HEAVISIDE EQUATIONS

1. THE GRAVITATIONAL FIELD IN VACUUM

In the gravitoelectromagnetic (GEM) description gfavitatio'?El the
gravitational field plays an intermediary role imetinteractions between masses.

It is set up by a given distribution of - whethemomt moving - masses and it is,
just as the electromagnetic field, defined by amefield with two components:

the ‘g-field’ characterized by the field vectofg and the §-inductior

characterized by the field vec'@;. These components each have a value defined

at every point of space and time and are thudjvelt an inertial reference frame
O, regarded as functions of the space and time ouaties.

At a pointP of a gravitational field where no matter is locatewherep;, the
mass density, an§, the density of the mass flow, are zerg,-and B, are the

results of the superposition of the contributiorfstloe various masses to
respectively the g-field and the g-induction.

In the framework of the theory of informatéh8! the gravitational field is
understood as an expanding cloud of carriers afvigational information” or
“g-information”. According to that theory any rneatal object manifests itself in
space by emitting — at a rate proportional toett mass - mass and energy less
particles that go away with the speed of light trad carry information about the
position (“g-information”) and about the state abvement (B-information”) of
their emitter. These grains of g-information aa#ed “informatons”.

So, according to the theory of informatons, infotom@ are the constituent
elements of the gravitational field of a certainsshdistribution. At an arbitrary
point P in that field there is a continuous flow of g-imeaton, carried by
informatons. The contribution of a certain mas# that flow are informatons
that pass ned in a specific direction with velocity. That flow is characterised
by the flow densityN: Nis the rate per unit area at which these informmatoross
an elementary surface perpendicular to the dineahowvhich they move. And
the cloud of informatons arourfd is characterized by the density nis the
number of informatons per unit volumsl and n are linked by the relationship:



The definitiof®! of an informaton implies that every informatontthasses near
P is characterized by two attributes that refer sceinitter: its g-index; and its

p-index sz. s;, the magnitude of the g-index is the elementargntjty of g-
information. It is a fundamental physical constaitrefers to the state of motion
of the source of the informaton and is definedHeyrelationship

CXSg

(2)

Sp =
B Cc

The informatons emitted by that pass ned® with velocity¢ contribute there
to thedensity of the g-information flowith an amountX.s;). (N.s;) is the
product of the density of the flow of informatonsving with velocityc nearP,
with s, the quantity that characterizes the g-informapen informaton at that

point. So, that vectoral quantity is the rateyoat area at which g-information at
P crosses an elementary surface perpendicular tithetion in which it moves.

It is identified WithEg, the g-field aP:

E, = N.5,

And the same informatons contribute there todaesity of the g-information
cloudwith an amountr(. 5z). (n.Sp) is the product of the density of the cloud of
informatons moving with velocit§ nearP, with s, the quantity that characterizes
thep -information per informaton at that point. Sottliactoral quantity isit P
the amount oB-information per volume unit. It is identified \mitﬁg, the g-
induction atP:

Bg =n. §’3

Fig 1



In fig 1, we consider the flow of informatons thait the moment - pass neaP
with velocity ¢. They are completely defined by their attribufgsand s,
respectively theig-indexand theirB-index. 48 is their characteristic angle: the
angle between the lines carryidgandc that it is characteristic for the movement
of the emittefl5,

An informaton that at the mometrppasses & is at the moment ¢ dt) atQ, with
PQ = c.dt. The infinitesimal change of the attributes of afoimaton between
the momentsand(t + dt) , is governed by the kinematics of that inforomat

On the macroscopic level, this implies that therestnie a relationship between
the change in time of the gravitational fid@g,ﬁg) at a point P and the spatial
variation of that field in the vicinity of P.

The intensity of the spatial variation of the coments of the gravitational field
atPis characterized byivE,, divB,, rotE, and byrotB, and the rate at which

. 0E 0By
these components change in tlme-l?)ytg and by?.

From the above it can be concluded that it makesesd¢o investigate the
relationships between the quantities that chanaeteéhe spatial variations of

(E,.B,) and the rate’s at which they change in time.

2 div]?fg - THE FIRST EQUATION IN VACUUM

The physical fact that the rate at which g-infonmaflows inside a closed empty
space must be equal to the rate at which it flomg"8!, can be expressed as:

- e
#SEg.ds=o

So (theorem of Ostrogradsky)
divE, = 0

In vacuum, the law of conservation of g-informatioan be expressed as
followed:

(1) At a matter free point P of a gravitationatlfl, the spatial variation ofg
obeys the law: divE, = 0



This is the first equation of Maxwell-HeavisideMacuum.

Corollary: At a matter free point P of a gravitational field
d
E[N' cos(40)] = 0

Becaus§é
divEg = div(N.S,) = grad(N).5, + N.div(s,) (3)
it follows from the first equation that:
grad(N).S; + N.div(s;) =0

1. First we calculategrad(N). s,.

Referring to fig 1:
NQ - NP N NQ - Np >
=—.€

grad(N) = T.ec =

Because an informaton that at the morhgrdsses & is at the moment

t + dt) atQ, (with PQ = c.d).
No—Np N(t—dt)—N() _ _aN

dt dt ot

So:
dwy LN 1N E
gra = Sl =TT 0T

And:
1 oN | | 1 ON
= —.E.sg.cos(AQ) 4)

grad(N).s; = — 250 65

2. Next, we calculateN. div(s,)
I 4
o Sg- dS
div(s,y) = av




For that purpose, we calculate the doulikgiral over the closed surfae
formed by the infinitesimal surfacd$ that are aP and Q perpendicular
to the flow of informatons (perpendiculac) and by the tube that connects
the edges of these surfaces (and tharal@aoc). dV =c.dt.dSis the
infinitesimal volume enclosed By

9€ﬁ§g.d_5)’ _ 54.dS.cos(A0p) — s,4.dS. cos(46,)
av dS.c.dt

div(§g) =

Because an informaton that at the morhgrdsses & is at the moment
t + dt) atQ, (with PQ = c.d:

cos(46p) — cos(46,)  cos[48(t)] — cos[46(t — dt)]  O[cos(46)]

dt dt Jt

N 1 d0{cos(46)}
dlU(Sg) = E.Sg.T

And:

N.div(s,) = g.sg.w (5)

Substitution of (4) and (5) in (3) gives:

1 oN Ad +N d{cos(40)} 0
ey .Sg.COS( ) - .Sg- PR =

Or:

d
E[N.COS(AQ)] =0 (6)



3 div_B)g — THE SECOND EQUATION IN VACUUM

Fig 1

We refer again to fig 1 and notice that
CX$g
c

Sg = —Sg- € and Sgp = = s4.5in(46).¢e,

From mathematit® we know:

divﬁg = div(n.53) = grad(n).3z + n.div(3s) (7)

1. Firstwe calculate:grad(n).sp

grad(n).s; = 0 becausgrad(n)is perpendicular t8;. Indeedh changes
only in the direction of the flow of inforimans, sagrad(n)has the same
orientation ag:

2. Next we calculaten. div(ss)

¢ 3. dS
dv

dw(§ﬁ) =

We calculate the double integral over tlusetl surfac& formed by the
infinitesimal surfaceslS = dz.dythat are aP and atQ perpendicular to the
X-axis and by the tube that connects the edgdssétsurfaces.

Becauss; is oriented along the-axis the flux of; through the planedz.dy
anddx.dzis zero while the fluxes through the plamksdyare equal and



opposite::

§535.dS _

0
av

dw(§ﬁ) =

Both terms of the expression (7)c11'h7§g are zero, sdivﬁg = 0, what implies
(theorem of Ostrogradsky) that for every closedem@Sin a gravitational field:

-
#Bg. $=0
S

We conclude:

(2) At a matter free point P of a gravitational fielthe spatial variation oﬁg
obeys the law: divB, = 0

This is the second equation of Maxwell-Heavisideanuum. It is the expression
of the fact that thg -index of an informaton is always perpendiculabtth its
g-indexs,; and to its velocity'.

4 rotffg - THE THIRD EQUATION IN VACUUM

The density of the flow of informatons that - a& thoment - passes ned with
velocity ¢ (fig 1) is defined as:

E; =N.S; = —N.s;. &,
We know thdf!

rotﬁg = {grad(N) x §;} + N.rot(5;)  (8)

1. First we calculate: grad(N) x 3,}

This expression describes the componemﬁg caused by the spatial
variation oN in the vicinity ofP when46 remains constant.

Nhas the same value at all points of the infinitedisurface that, &, is
perpendicular to the flow of informatonSograd(N)is parallel to¢ and its



magnitude is the increase of the magnitdde er unit length. Thus,
grad(N)is determined by:

with PQ = c.dt,
dN)=—2_—°-=2 " _
grad(N) PQ c.dt c
And:
NQ_NP 6 N NQ_NP >
.—XSg =W.Sﬁ

grad(N) X §g = W p

The density of the flow of informatons@at the momenitis equal to the
density of that flow & at the momentt (- dt), so:

No—Np N(t—dt)—N()  ON
ac dt ot
And taking into account that :
N
—=n
c
we obtain:
on
9

grad(N) X 5, = ~ 558

2. Next we calculatef N.rot(s;) }

This expression describes the componen@tcﬁ‘)g caused by the spatial
variation of46 - the orientation of the g-index - in the vicing§P - whenN
remains constant(40)e is the characteristic angle of the informatons tha
pass ned? and(40)q is the characteristic angle of the informatons tha

at the same moment pass r@acfig 2)



O
el
- \
\
\
\
\
\

§gP < > X
S
Fig 2
For the calculation of
o $3,.dl
rot(sy) = 5

withdS the encircled area, we calculgts, dl along the closed path

PQgpP that encirclesdS dS= PQ.Pp = c.dt.Pp (PQ andgp are parallel
to the flow of the informaton€)q andpP are perpendicular to it).

Sq-Sin[(460)q].Qq — s4.sin[(46)p)].pP 3
c.dt.Pp Bl

N.rot(§g) = N.

The characteristic angle of the informat@at at the momentis equal to
the characteristic angle of the informatati3 at the momentt ¢ df), so:

Sqg-sin[460(t — dt)].Qq — sg.sin[ 46 (t)].pP
€,
c.dt.Pp

N.rot(§g) = N.

The rate at which sia@) in P changes at the momemis:

d{sin(46)} _ sin{[46](t)} — sin{[A8](¢t — dt)}
ot B dt
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And taking into account that

N
n=—
c
we obtain:
d{sin( 46 9]
N.rot(s,) = —n. Sg.%.@ = — n.a{sg.sin(AH).éz}
or
ds
N.rot(3;) = —n.a—f (10)

Combining the result®)and (10), we obtain:

rotﬁg = grad(N) x S, + N.rot(§g)

We conclude:

(3) At a matter free point P of a gravitationatlfl, the spatial variation ofg
and the rate at whicﬁg IS changing are connected by the relation:
B

9

T'OtE) = -
9 ot

This is the third equation of Maxwell-Heavisidevacuum. It is the expression
of the fact that any change of the produdi; at a point of a gravitational field is
related to a spatial variation of the proddcg; in the vicinity of that point.

The relation
. oB
tE, = ——2
Tro g at

implies (theorem of Stok&Y:



RN aB — (')CDB
ngg'l:_f ot S__atﬂ -

H
The orientation of the surface vecttf is linked to the orientation of the path on

L by the “rule of the corkscrew'®; = || Eg .dS is called the B -information-
flux throughS'.

So,in a gravitational field, the rate at which the $age integral of§g over a

surface S changes is equal and opposite to theifitegral of Eg over its
boundary L.

. oF
5 rotB, and a_tg - THE FOURTH EQUATION

Fig 3

We consider agaiﬁg andB,, the contributions of the informatons that - & th

moment t - pass ne& with velocity ¢, to the g-field and to the g-induction at
that point.(fig 3).

Eg

- -
N.s; = —N.s4. e,

and

ay

§ XSg
)

n.5p = n. = n.s,.5in(46).¢,

(o

A. Let us calculateotB,.

We know thdf!
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r0t§g = {grad(n) x $3} + n.rot(ss) (12)

1. First we calculategrad(n) x sz}

This expression describes the componenbtcﬁg caused by the spatial
variation oh in the vicinity ofP when46 remains constant.

nhas the same value at all points of the infinitesisurface that, &, is
perpendicular to the flow of informatonso gdad(n)is parallel toc and its
magnitude is the increase of the magnitddeper unit length.

With PQ = c.dt, grad(n)is determined by:

TLQ - nP E TLQ - np E
d = e — —
grad(n) PQ c.dt c

The density of the cloud of informaton€edt the momentis equal to the
density of that flow & at the momentt ¢ dt), so:

ng—np n(t—dt)—-n()  on
dt dt - ot
And
20 = 1onc 1on
grad(n) = R v c'at'ec

The vector §rad(n) x sz} is perpendicular to het plane determinedcby
andss. So, it lies in theY-plane and is there perpendiculactdorming

an angledd with the axiOY. Taking into account the definition of vectoral
product we obtain:

1 dn
grad(n) X Sg = —Z.E.Sg.sin(de). (e. X é,)

With
Typ hier uw vergelijking. é’c X

-

_ -
z = —€i1c

- 1 an . -
grad(n) X sz = E.E.sg.sm(AQ).elc
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o N :
And, taking into account that = —we obtain:

grad(n) X s = ;.E.sg.sin(AH).elc (13)

2. Next we calculated.rot(Sg) }

This expression is the componenmrfﬁg caused by the spatial variation of
§ﬁ in the vicinity of P whenn remains constant. For the calculation of

§35.dl
ds

o

rot(sp) =

withdS the encircled area, we calcul¢t§ﬁ d_f along the closed path

PpgQP that encirclesdS dS= PQ.Pp = c.dt.Pp(fig 4). (PQandgpare
Parallel to the flow of the informaton®g andpP are perpendicular to it).

-

¢ Sp.dl _— Sg-Sin[(40)p)].Pp —sg.sin[(AQ)Q].qQé
as =t c.dt.Pp e

rot(Sp) =

The characteristic angle of the informat@t) at the momentis equal to
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the characteristic angle of the informatati3 at the moment ¢ df), so:

$Sp.dl ,  s,.{sin[48(t)]. Pp — sq.sin[40(t — dt)]}.qQ |

c.dt.Pp
The rate at which sia@) atP changes at the momenis:

d{sin(46)} sin{(40)[t]} — sin{(40) [t — dt]}

ot dt
So:
. 1 d[sin(46)] .
TOt(S[;) = Sg.z.T.elc
And with
N
n=—
C

we finally obtain:

. 1 d[sin(40)] |
n.rot(sﬁ) = Sg'C_Z'N'T'eJ-C (14)

Substituting the results (13) and (14) in (12) \bé&am:

- 1 ON d[sin(46)]. .,
rotB, = ;.sg.{ﬁ.sm(éle) + N'T}' €lc
1 d . .
= ;.sg.%[N. sin(40)].¢, . (15)
0E,

B. Now we calculateg

€1c
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We know thaf!:

0E; ON | 4 . %%

ot ot 9T ot
And that:

S . 05, 2(46) _

Sg = —Sg. €y and e Sg- 5% L€y
So:

0E, ON | 0(40) .

ke —E.Sg.ex + N.s,. T .ey

Taking into account:

éx = cos(A0).é. —sin(460).€,. and €, = sin(40).é. + cos(40).é,,

we obtain:
0E, [ ON A6) 4 N 040) . o1 s
5t —[ PR .Sg.c0s(46) Sg- 57 .sin( )].ec
ON , d2(40) .
+ [ﬁ.sg.sm(de) + N.sg. 5% .cos(él@)].elc
or:
Ok _ { a[1v A6) *+6[N'(A9)]*
Fraie Sg- 3 .cos( . €. 3 .sin €1c}

Taking into account (6), we find:

0E, 0 N sin(A9). 8 16
W_Sg,a[ .sin(46)].€, . (16)

C. From (15) an (16), we conclude:
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(4) At a matter free point P of a gravitational fielthe spatial variation oﬁg
and the rate at whicﬁg Is changing are connected by the relation:

t§ 1 GE
ro c2 ot

This is the fourth equation of Maxwell-Heavisidevacuum. It is the expression
of the fact that any change of the proddic; at a point of a gravitational field

is related to a spatial variation of the produd; in the vicinity of that point.

This relation implies (theorem of Stoke#):a gravitational field, the rate at
which the surface integral (ﬁ‘g over a surface S changes is proportional to the

line integral of§g over its boundery L:

7€§ d_i—lﬂaﬁgd_) ff = _ 109
97 ez ))s ot c? ot c2 ot

H
The orientation of the surface vecttf is linked to the orientation of the path on

L by the “rule of the corkscrew’d; = [f, Eg .dS is called the “g-information-
flux throughS'.

6 THE MAXWELL-HEAVISIDE EQUATIONS

The volume-element at a pofdtnside a mass continuum is in any case an emitter
of g-information and, if the mass is moving, alssarce off -information.
According to the theory of informatdfi$"! , the instantaneous value@f - the

mass density & - contributes to the instantaneous valudszﬁg at that point

with an amount- ';—G; and the instantaneous valueig:nE the mass flow density
0

- contributes to the instantaneous valueaB, atP with an amount-v,. /.

Generally, at a point of a gravitational fieldrked to an inertial reference frame
O - one must take into account the contributionstlied local values of
pc(x,y,z;t) and offG (x,y,z;t) . This results in the generalization and expansio
of the laws in a mass free point. By superposiweobtain:

(1) At a point P of a gravitational field, the spatw’griation ofﬁg obeys the
law:




In integral form:

- — 1
S No G

(2) Ata point P of a gravitational field, the spatiariation of§g obeys the
law:

ding =0

In integral form:

-
¢B=#Bg.d5=0
S

(3) At a point P of a gravitational field, the spdtieariation of Eg and the rate
at Which§g is changing are connected by the relation:

rotE =9

dt

In integral form:

fovt =[] o= [ @<

(4) At a point P of a gravitational field, the spdtiariation of§g and the rate
at whichﬁg Is changing are connected by the relation:
L 10E, )

rotB, = ——=—v,.
9 c? ot 0-Jg

In integral form:

g . — 1 0 s = . =
$5,0=2 [T [ =2 2[5 T [ B
S S S

These are the laws of Heaviside-Maxwell or the [aMGEM.

The mathematical deductions confirm that these teaps nor their solutions
indicate an existence of causal links betweégm and Eg. Therefore we must
conclude that a gravitational field is a dual eptdlways having a “field-" and
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an “induction-” component simultaneously createg their common sources:
time-variable masses and mass flows

GEM is consistent with special relativity. The GEMuations are analogue to
Maxwell's equations in EM and it is provédhat these are consistent with special
special relativity. Thughe Maxwell-Heaviside equations are invariant under
Lorentz transformation.In this context it should be noted that the f&ett tthe
rate at which a material body emits informatoriadependent of its velocify®!
and completely defined by its rest massimplies that in equation (1) the value

d : : : N
of pg = ;’:}0 depends on the state of motion — relative tactmsidered inertial

reference system - of the mass elendent Indeed in the case of a moving mass
element, the Lorentz contraction must be takemaetount in the determination

of dV. Because a mass flow is made up of moving massesits its densitjc
also depends on the inertial reference frame ichvitis considered. This implies

that in equation (4) the expressionfgfdepends on the inertial reference frame.

7 THE GEM EQUATIONS ARE MATHEMATICALLY CONSISTENT

At a pointP of a gravitational field - wherg;; is the mass density afigl IS the

density of the mass flow E, and B, must obey to the GEM equations (the
Maxwell-Heaviside equations):

1 divﬁg = _Pe
No
2. ding =0
3. rotE, = 9B,
rotE, = 5t
L 10E, N
4 TOth__Zat — Vo-Jg

1
And:ng.vy = =

* On the understanding that the induction-componguéks zero if the source of the field is
time independent.
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We will prove that these equations are mathemayicansistent.

7.1 The case of an object with invariable rest mas

Becausediv(rotF) = 0, it follows from (4) that:

1 a I .7 !
;E(dlvEg) —Vo.div]g =0 (4)

Substituting (1) in (4’) gives:
1 aPG
Tt

— V. dw]G =0

And with

= v, we obtain from (4°):
c®no

9
% Ldivj, =0 (4"

(4”) is nothing else but the expression of the tdwnass conservation. Indeed:

- The rate at which mass is flowing out farolosed surfacs is:

$$.Ja-dS  (A)

- The rate of the decrease of the mass enclos&ib{V is the volume
enclosed b$):

-2 st [ (-22).av @

Because of the law of mass conservation=3), so

#JGdS—fjj(— Poy.av (5)
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Ostrogradsky’s theorem (divergence theorsitajes that

_)

¢ F. S=fff divF.dV

Substituting in (5) gives:

[[[aiTeav = [f] 225000

It follows: ;
divfG = —%
Or:
aﬁ + divfG =0

We conclude that - in a system with invariable reats - the GEM equations
of the gravitational field are in line with theveof mass conservation.

2. The case of an object with variable rest mass

Let us consider - relative to an inertial refereffigene - an object with rest
massm, that - due to intern instability - during theripe (0, 4t) emits EM
radiation. This implies that that object duringpat time interval is
emitting electromagnetic enerdyem carried by photons (+ gravitomagnetic
energy Ucem carried by gravitons) that propagate with the spe=fd
light. Because of that event, from the moment4t the rest mass of the particle

Is decreased with an amoun‘fM C(Z GEM)

to the valuemy'.

Consider the surfacgenclosing the object in whole or in parV i¢ the volume
enclosed byy). At a momenO <t < At:

- The rate of the decrease of the encloseEsbns:

* negligible in first approximation
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_%jﬂvpadv: jffv(—%if)dv @)

- J., the density of the mass flow out from the enetbgolume at a poirR

of Shas two components:

1f61 describing the outflow of massive mass;
ZfGZ describing the outflow of mass in the form of gye If we

S
2

represent the density of #reergy flow bys" ]c;z =
So:

Je =Je1tJez2=Jc1 t+

and the rate at which mass-energy is flgvaat from the closed surfage
IS:

>
¢h.Jg.dS  (B)
(A) = (B) because of the law of mass-energy corsam, so

. a5 = ffj(——) dv

5 d d
div]; = —% or % + dw]G =0

and

We conclude that in the case of a system with bkrigest mass, the GEM
equations of the gravitational field are in lineithv the law of mass-energy
conservation.
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8 GRAVITATIONAL WAVES

8.1 The wave equation

In free space - wheyg; =fG =0 - the GEM equations are:

1. divE, = 0

2. divB, = 0

3. rotE, = 95,
. o g = ot

4. rotB, = — L,
. o g — C2 ot

To attempt a solution of a group of simultaneousaéigns, it is usually a good

plan to separate the various functions of spaeertee at equations that give the
distributions of each.

It follows from (3):

0B,
=\ g ’
rot(rotEg) = —rot <7> (39

Becausl! rot(rotF) = grad(divF) — V2F, whereV2is the Laplacian,

(3") leads to:

grad(divEy) — V?E, = —rot(ﬁ = —E(roth)

And taking into account (1) and (4):

L 1 9%E,
A R )
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This is the general form of the wave equation.sTarm applies as well to the g-
induction, as is readily shown by taking first tieéor of (4) and then substituting
(2) and (3):

.~ 1 8%B, ,
VB = 2 ¢ ()

Solutions of this equation describe how disturbanakthe gravitational field
propagate as waves with speed c.

To illustrate this we consider the special casgpaice variation in one dimension
only. If we take the-component of (5) and have space variations ontlgeiz-
direction, the equation becomes simply:

0%E

g _ 1 0Ege

dz2 c2’ 0t?

This equation has a general solution of the form
Z Z
Ep=fi(t=2)+£(t+3) ©

The first term of (6) represents the wave or florcti; traveling with velocityc
and unchanged form in the positizalirection, the second term represents the
wave or functiorf, traveling with velocityc and unchanging form in the negative
z-direction.

8.2 Gravitational wave generated by an object witlvariable rest mass

Another phenomenon that is the source of a gramitak wave is the conversion
of rest mass into energy (what per example happetise case of radioactive
processes). To illustrate this, let us - relatwean inertial reference frame -
consider a particle with rest magsg that - due to intern instability - during the
period (, 4t) emits EM radiation.
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This implies that that particle during that timéeirval is emitting electromagnetic
energy Ugw carried by photons (and gravitational enekdyen® carried by
gravitons) that propagate with the speed of ligBetween the momerit=0 and
the momentt = At, the rest mass of the particleis, because o thi

event, decreasingith an amount UsmUeem)  gom the valuemy, to the

CZ
value my'. Because the gravitational field is determined byrdst mass, this
implies that ift<0 the source othe gravitational field of the particle iy and
fort> At itis my. It follows that at the momerit the gravitational field at a
point P at a distancer>c.t is proportional tomy, and at a point at a distance
<cC.(t-4t) to my.

During the periodt( t+4t) the gravitational field at a point at a distance

c.t changes from the situation where it is determimgih, to the situation where
it is determined byny'. So, the conversion of rest mass of an objeotradiation

Is the cause of a kink in the gravitational fiefdlwat object, a kink that with the
speed of light - together with the emitted radiati propagates out of the object.

We can conclude that the conversion of (a parttb® rest mass of an object into
radiation goes along with the emission by that obg# a gravitational wave.

The effect of the decrease - during the time il At) - of the rest mass of a
point mass on the magnitude of its g-field & the point P at a distance r is
shown in the plot of fig. 5.

1. Until the momentt = E the effect of the conversion of rest mass into

radiation has not yet reachBd So, during the perioc{)(g) the quantity of mass-

energy enclosed by an hypothetical sphere withusadtentered on the particle
Is still my (the remaining part of the rest mass + all titgateon that during the
mentioned period has arisen from the conversiorestf mass). From the first
GEM equation it follows:

my

E =— 9%
9 4mn,.r2

2. From the moment = £+ At, the radiation generated by the conversion

of rest mass has left the space enclosed by thattgfical sphere with radius
that from that moment only contains the remainiegt massn,’. From the first
GEM equation it follows:

* negligible in first approximation
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L
9" 4mny.r2

3. During the time intervalg(,£+At), the mass-energy enclosed by the

hypothetical sphere with radiugs decreasing (not necessary linearly) because
mass-energy flows out in the form of radiation., @aring that period, atP is

decreasing.

(mo)

‘e
.
0
.
0
.
.
0
0
.
‘e
0

(mo)

v

A
C

C

Fig 5
8.3 Gravitational wave generated by a harmonicallyscillating particle

In fig 6 we consider a point massthat harmonically oscillates, with frequency
V= % around the origin of the inertial referencenfesD. At the moment

it pasées aP;. We suppose that the speed of the charge is almagh smaller
than the speed of light and that it is described by

v(t)=V.coswt
The elongatiorz(t) and the acceleratica(t) are then expressed as:
%4 T T
z(t) = ;.cos(a)t — ;) and a(t) = w.V.cos(wt + 5)
We restrict our considerations about the gravitetidield of m to pointsP that

are sufficiently far away from the origi@. Under that condition we can posit
. 4 > - .
that the fluctuation of the length of the vec®P = 7; is very small relative to
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the length of the time-independent position veétothat defines the position of

P relative to the origirD. In other words: we assume that the amplitude of the

oscillation is very small relative to the distanbe$ween the origin and the points
P on which we focus.

v<

Fig 6

In the framework of the theory of informat&h8! it is shown that, starting from

the complex quantity’ =V.e/? - representing(t) - E,,., the complex

representation of the time dependent part of testrersal component B)g and
Bg(p, the complex representation S‘L at P are:

_ m.V 1

Ejj.=———.eJk7 ( j'w'vo).sine
g=¢ A No.C. T2 r
_ Vo-m.V . 1 jk
— _ jkr
By P .(r2 + " ).sin 6

where k = % the phase constant. Note tﬁgg, = %

Thus, relative t®, B, and the time dependent part Bf, . are expressed as
functions of the space and time coordinates as:
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E, .(r,0;t)
ng}(r,g; t) =%
_ vo.m.V.sin6.V1+ k?r?

4mr?

.cos(wt —kr + @ +m)

with tg® = kr.

So, an harmonically oscillating particle emits arsversal “gravitomagnetic”
wave that propagates out of the mass with thedspekght:

In points at a great distance from the oscillatmgss, specifically there where
r>> % = % this expression asymptotically equals:

E Vo-k.m.V.sin 60
__~glc — 0 , _
Byy = - yp— .sin(wt — kr)
_Vom.w.V.sinf -
= yrp— sin(w )

™ .
vo.m.a(t—z).sme

4mcr

The intensity of the “far gravitational field” iswversely proportional to, and is
determined by the component of the acceleration, ¢that is perpendicular to the
direction ofé..

We can conclude that the existence of gravitatioveales is embedded in the
GEM description of gravity. According to the thgoof informatons a
gravitational wave is the macroscopic manifestatibthe fact that the “train” of
informatons emitted by an oscillating source aaddling with the speed of light
in a certain direction is a spatial sequence adrmitons whose characteristic
angle is harmonically fluctuating along the “trainthat implies that the
component of their g-index perpendicular to thaloeity ¢ and theirp-index
fluctuate harmonically in space. Gravitational waveansport gravitational
energy because some of the informatons that cotestiie “train” are carriers of
energy. They are called gravitons. However, thergy quantum carried by a
graviton is small in such a way that it is veryfidiilt to give experimental
evidence of its existence.
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