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ABSTRACT 
 

According to the  gravitoelectromagnetic description of the gravitational phenomena,  the 
Maxwell-Heaviside equations (GEM equations) govern the gravitational field.  In this 
article these equations are mathematically deduced from the kinematics of the 
“informatons”, that – according to the “theory of informatons” - are the constituent 
elements of that field.  It is also shown that the GEM equations are mathematically 
consistent and that  they imply the existence of gravitational waves. 
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THE MAXWELL-HEAVISIDE EQUATIONS 
 

 
1.  THE GRAVITATIONAL FIELD IN VACUUM 
 
In the gravitoelectromagnetic (GEM) description of gravitation[1],[2],[3] the 
gravitational field plays an intermediary role in the interactions between masses.  
 
It is set up by a given distribution of - whether or not moving - masses and it is, 
just as the electromagnetic field, defined by a vector field with two components:   
the “g-field” characterized by the field vector ��⃗� and the “g-induction” 

characterized by the field vector ��⃗ �.  These components each have a value defined 
at every point of space and time and are thus, relative to an inertial reference frame 
O, regarded as functions of the space and time coordinates. 
 
At a point P of  a gravitational field where no matter is located - where ��, the 
mass density,  and �⃗�, the density of the mass flow, are zero – ��⃗� and  ��⃗ � are the 
results of the superposition of the contributions of the various masses to 
respectively the g-field and the g-induction. 
 
In the framework of the theory of informatons[4],[5] the gravitational field is 
understood as an expanding cloud of carriers of  “gravitational information” or 
“g-information”.   According to that theory any material object manifests itself in 
space by emitting – at a rate proportional to its rest mass - mass and energy less 
particles that go away with the speed of light and that carry information about the 
position (“g-information”) and about the state of movement (“β-information”) of 
their emitter.  These grains of g-information are called “informatons”. 
 
So, according to the theory of informatons, informatons are the constituent 
elements of the gravitational field of a certain mass distribution.  At an arbitrary 
point P in that field there is a continuous flow of g-informaton, carried by 
informatons.  The contribution of a certain mass m to that flow are informatons 
that pass near P in a specific direction with velocity �⃗ .  That flow is characterised 
by the flow density N:  N is the rate per unit area at which these informatons  cross 
an elementary surface perpendicular to the direction in which they move.  And 
the cloud of informatons around P is characterized by the density n:  n is the 
number of informatons per unit volume.  N and n are linked by the relationship: 
                                    

� = �
�           (1) 
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The definition[4],[5] of an informaton implies that every informaton that passes near 
P is characterized by two attributes that refer to its emitter: its g-index �⃗� and its 
β-index �⃗�.  sg, the magnitude of the g-index is the elementary quantity of g-
information.  It is a fundamental physical constant.  �⃗� refers to the state of motion 
of the source of the informaton and is defined by the relationship 
 

�⃗� = �⃗ × �⃗��           (2) 

 
The informatons emitted by m that pass near P  with velocity �⃗  contribute there 
to the density of the g-information flow with an amount (�. �⃗�).  (�. �⃗�) is the 
product of the density of the flow of informatons moving with velocity �⃗ near P, 
with �⃗�, the quantity that characterizes the g-information per informaton at that 
point.  So, that vectoral quantity is the rate per unit area at which g-information at 
P crosses an elementary surface perpendicular to the direction in which it moves.  
It is identified with ��⃗�, the g-field at P: 
 

��⃗� = �. �⃗� 
 
And the same informatons  contribute there to the density of the g-information 
cloud with an amount (�. �⃗�).  (�. �⃗�) is the product of the density of the cloud of 
informatons moving with velocity �⃗ near P, with �⃗�, the quantity that characterizes 
the β -information per informaton at that point.  So that vectoral quantity is at P 
the amount of β-information per volume unit.  It is identified with ��⃗ �, the g-
induction at P: 

��⃗ � = �. �⃗� 
 
 
                                                         Y 
 
                                                                                      Q             
                                                                                          

                                                                    �⃗ 
                                                                        #$ 
                                      �⃗�            P                                      X 
                                                         
                                                   �⃗� 
                                         Z                   

Fig 1 
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In fig 1, we consider the flow of informatons that - at the moment t - pass near P 
with velocity  �⃗.  They are completely defined  by their attributes �⃗� and �⃗�, 
respectively their g-index and their β-index.  #$ is their characteristic angle: the 
angle between the lines carrying  �⃗� and �⃗ that it is characteristic for the movement 
of the emitter[4],[5].   
 
An informaton that at the moment t passes at P is at the moment (t + dt) at Q, with 
PQ = c.dt.  The infinitesimal change of the attributes of an informaton between 
the moments t and (t + dt) , is governed by  the kinematics of that informaton  
 
On the macroscopic level, this implies that there must be a relationship between 
the change in time of the gravitational field (��⃗�, ��⃗ �) at a point P and the spatial 
variation of that field in the vicinity of P.  
 
The intensity of the spatial variation of the components of the  gravitational field 
at P is characterized by &'(��⃗�,  &'(��⃗ �,  )*+��⃗� and by )*+��⃗ �  and the rate at which 

these components change in time by  
,-�⃗ .
,/  and by 

,0�⃗ .
,/ .   

 
From the above it can be concluded that it makes sense to investigate the 
relationships between the quantities that characterize the spatial variations of 
(��⃗�,��⃗ �) and the rate’s at which they change in time.  
 
2  1234�⃗ 5 -  THE FIRST EQUATION IN VACUUM 
 
The physical fact that the rate at which g-information flows inside a closed empty 
space must be equal to the rate at which it flows out[4],[5], can be expressed as: 

 

6��⃗�7
. &89: = 0 

 
So (theorem of Ostrogradsky)[6]:   

&'(��⃗� = 0 
 

In vacuum, the law of conservation of  g-information can be expressed as 
followed: 
 
(1)  At a matter free point P of a gravitational field, the spatial variation of ��⃗� 

obeys the law:    &'(��⃗� = 0 
 



5 

 

This is the first equation of Maxwell-Heaviside in vacuum.  
 
 
Corollary : At a matter free point P of a gravitational field <

<+ [�. �*�( #$)] =  0                                                           
 
 Because[6] 

&'(��⃗� = &'(?�. �⃗�@ = A)B&(�). �⃗� +  �. &'(?�⃗�@               (3) 
 
it follows from the first  equation that: 
 A)B&(�). �⃗� +  �. &'((�⃗�) = 0 
  
       1.  First we calculate:  A)B&(�). �⃗�. 
 
       Referring to fig 1: 
 

A)B&(�) = �E − �GHI . J⃗K = �E − �G�. &+ . J⃗K 

 
       Because an informaton that at the moment t  passes at P is at the moment 
       (t + dt) at Q,  (with PQ = c.dt).  
 �E − �G&+ = �(+ − &+) − �(+)

&+ = − <�
<+  

 
       So: 

A)B&(�) = − 1
� . <�

<+ . J⃗K = − 1
� . <�

<+ . �⃗
� 

 
       And: 
       

A)B&(�). �⃗� = − 1
�L . <�

<+ .  �⃗. �⃗� =   1
� . <�

<+ . ��. �*�( #$)         (4) 

     
 
       2.  Next, we calculate:  �. &'((�⃗�) 
 

&'((�⃗�) = ∯ �⃗�. &89:
&O  
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       For that purpose, we calculate the double integral over the closed surface S 
       formed by the infinitesimal surfaces dS  that are at P and  Q  perpendicular 
        to the flow of informatons (perpendicular to �⃗) and by the tube that connects 
        the edges of these surfaces (and that is parallel to �⃗).  dV =c.dt.dS  is the 
        infinitesimal volume enclosed by S: 
 

         

        &'(?�⃗�@ = ∯ �⃗�. &89:
&O =  ��. &8. �*�( #$G) − ��. &8. �*�(#$E)

&8. �. &+    
 

       Because an informaton that at the moment t  passes at P is at the moment 
       (t + dt) at Q,  (with PQ = c.dt):  

 

�*�( #$G) − �*�(#$E) 
&+ = cos[ #$(+)] − cos [#$(+ − &+)]

&+ = <[cos(#$)]
<+  

        

&'(?�⃗�@ = 1
� . ��. <{�*�( #$)}

<+  

       And:    

             

           �. &'(?�⃗�@ = �
� . ��. <{�*�( #$)}

<+       (5) 

 
Substitution of (4) and (5) in (3) gives: 
 
            1

� . <�
<+ . ��. �*�( #$) + �

� . �� . <{�*�( #$)}
<+ = 0 

Or:  

<
<+ [�. �*�( #$)] =  0     (U) 
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3  123V��⃗ 5 –  THE SECOND EQUATION IN VACUUM 

 
                                                         Y 
 
                                                                                      Q             
                                                                                          

                                                                    �⃗ 
                                                                        #$ 
                                      �⃗�            P                                      X 
                                                         
                                                   �⃗� 
                                         Z                   

Fig 1 
 

We refer again to fig 1 and notice that  

�⃗� = −��. J⃗W                  and                   �⃗� = K⃗×X⃗.
K = �� . �'�( #$). J⃗Y 

 
 
From mathematics[6] we know: 
 

&'(��⃗ � = &'(?�. �⃑�@ = A)B&(�). �⃗� + �. &'(?�⃗�@         (7) 
 

 
       1.  First we calculate:  A)B&(�). �⃗� 
 
       A)B&(�). �⃗� = 0  because grad(n) is perpendicular to �⃗�.  Indeed n changes  
       only in the direction of the flow of informatons, so grad(n) has the same 
       orientation as �⃗: 
 
       2.  Next we calculate:  �. &'((�⃗�)  
 

&'((�⃗�) = ∯ �⃗� . &89:
&O  

   
       We calculate the double integral over the closed surface S formed by the 
       infinitesimal surfaces  dS =   dz.dy  that are at P and at Q perpendicular to the 
       X-axis and by the tube  that connects the edges of these surfaces. 
 
       Because �⃗� is oriented along the Z-axis the flux of �⃗� through the planes dz.dy 
        and dx.dz is zero while the fluxes through the planes dx.dy are equal and 
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        opposite:: 
 

&'((�⃗�) = ∯ �⃗� . &89:
&O = 0 

 
 

Both terms of the expression (7) of &'(��⃗ � are zero, so &'(��⃗ � = 0, what implies 
(theorem of Ostrogradsky) that for every closed surface S in a gravitational field: 
           

6��⃗ �7
. &89: = 0 

 
We conclude: 
 
(2)  At a matter free point P of a gravitational field, the spatial variation of ��⃗ � 

obeys the  law:    &'(��⃗ � = 0 
 
This is the second equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that the \ -index of an informaton is always perpendicular to both its 
g-index �⃗� and to its velocity �⃗. 
 
4  ]^_4�⃗ 5  -  THE THIRD  EQUATION IN VACUUM 
 
The density of the flow of informatons that - at the moment t - passes near P with 
velocity  �⃗  (fig 1) is defined as:   
 

��⃗� = �. �⃗� = −�. ��. J⃗W     
  

We know that[6] 

 
)*+��⃗� = `A)B&(�) × �⃗�a + �. )*+?�⃗�@        (8) 

 
 
       1.  First we calculate: {A)B&(�) × �⃗�} 
 
       This expression describes the component of )*+��⃗� caused by the spatial 
       variation of N in the vicinity of P when #$ remains constant.  
 
       N has the same value at all points of the infinitesimal surface that, at P, is  
       perpendicular to the flow of informatons.   So grad(N) is parallel to �⃗ and its 
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       magnitude is the increase of the magnitude of N per unit length.  Thus,  
       with  PQ = c.dt ,    grad(N) is determined by:     
 

A)B&(�) = �E − �GHI . �⃗
� = �E − �G�. &+ . �⃗

� 

  
      
       And:                   

A)B&(�) × �⃗� = �E − �G�. &+ . �⃗
� × �⃗� = �E − �G�. &+ . �⃗� 

 
 
       The density of the flow of informatons at Q at the moment t is equal to the 
       density of that flow at P at the moment (t - dt), so: 
 
 �E − �G&+ =  �(+ − &+) − �(+)

&+ =  − <�
<+  

 
        
       And taking into account that :  �

� = � 

 
       we obtain: 
   

A)B&(�) × �⃗� = − <�
<+ . �⃗�                (9) 

 
 

       2.  Next we calculate: { �. )*+(�⃗�) } 
 
       This expression describes the component of )*+��⃗� caused by the spatial 
       variation of #$ - the orientation of the g-index - in the vicinity of P - when N 
       remains constant.  (#$)P  is the characteristic angle of the informatons that 
       pass near P and (#$)Q is the characteristic angle of the informatons that  
       at the same moment pass near Q.  (fig 2) 
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                                                           Y                       
                                                                                    q         
                                                                                     
                                                                         �⃗�E             
                                                   p                                       Q 
                                                                          �⃗ 
                                                                           #$ 
                                     �⃗�G                                                           X 
                                               �⃗�       P 
 
                                      Z    
                                                                   Fig 2 
 
 
       For the calculation of 

)*+(�⃗�) = ∮ �⃗�. &e9:
&8  

 

       with dS  the  encircled area, we calculate ∮ �⃗� . &e9:
 along the closed path   

       PQqpP  that encircles  dS:  dS= PQ.Pp = c.dt.Pp.   (PQ and qp are parallel 
       to the flow of the informatons,  Qq  and pP are perpendicular to it). 
 
 

�. )*+?�⃗�@ = �. �� . �'�[( #$)E]. If − ��. �'�[( #$)G)]. gH
�. &+. Hg . J⃗Y 

 
 

       The characteristic angle of the informatons  at Q  at the moment t is  equal to 
       the characteristic angle of the informatons at P at the moment (t - dt),  so: 
 
 

�. )*+?�⃗�@ = �. ��. sin[#$(+ − &+)]. If − ��. sin[ #$(+)]. gH
�. &+. Hg . J⃗Y 

 
 
       The rate at which sin(#$) in P changes at the moment t, is: 
 
 <{�'�( #$)}

<+ = �'�{[ #$](+)}  − sin{[#$](+ − &+)}
&+  
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       And taking into account that  

� = �
�  

       we obtain:   
 
 

�. )*+?�⃗�@ = − �. ��. <{�'�( #$)}
<+ . J⃗Y = − �. <

<+ {��. �'�( #$). J⃗Y} 
 

       or 

�. )*+?�⃗�@ = −�. <�⃗�<+                (10) 
 
 

      Combining the results (9) and (10), we obtain:    
  

)*+��⃗� = A)B&(�) × �⃗� + �. )*+?�⃗�@ 
 

 = − i<�
<+ . �⃗� + �. <�⃗�<+ j   

 

                        = − <?�. �⃗�@
<+ = − <��⃗ �<+                (kk) 

 
We conclude: 
 
(3)  At a matter free point P of a gravitational field, the spatial variation of ��⃗� 

and the rate at which ��⃗ � is changing are connected by the relation: 

)*+��⃗� = − <��⃗ �<+  

 
This is the third equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that any change of the product �. �⃗� at a point of a gravitational field is 
related to a spatial variation of the product �. �⃗� in the vicinity of that point. 
 
The relation 

)*+��⃗� = − <��⃗ �<+   
 
implies (theorem of Stokes[6]):   
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l ��⃗� . &e9: = − m <��⃗ �<+7
. &89: = − <

<+ m��⃗ �7
. &89: = − <n0<+  

 

The orientation of the surface vector &89:
 is linked to the orientation of the path on 

L  by the “rule of the corkscrew”.  n0 = ∬ ��⃗ �7 . &89:
 is called the “\ -information-

flux through S”. 
 
So, in a gravitational field, the rate at which the surface integral of  ��⃗ �  over a 

surface S changes is equal and opposite to the line integral of  ��⃗� over its 
boundary L. 
 

5  ]^_V��⃗ 5  and  
p4�⃗ 5
p_  -  THE FOURTH EQUATION 

 
                                                         Y 
 
                                                                                      Q             
                                                                                          

                                          J⃗qK                       �⃗ 
                                                                        #$ 
                                      �⃗�          P                                        X 
                                                         
                                                   �⃗� 
                                         Z   
                                                                Fig 3                 
 
We consider again ��⃗� and ��⃗ �, the contributions of the informatons that - at the 
moment t - pass near P with velocity �⃗,  to the g-field and to the g-induction at  
that point. (fig 3).  
 

��⃗� = �. �⃗� = −�. ��. J⃗W                                                                             
 

and       

��⃗ � = �. �⃗� = �. �⃗ × �⃐�� = �. �� . �'�( #$). J⃗Y                                      
 

A.  Let us calculate )*+��⃗ �. 
 
We know that[6] 



13 

 

)*+��⃗ � = `A)B&(�) × �⃗�a + �. )*+?�⃗�@          (12) 
 
 

       
1.  First we calculate:{A)B&(�) × �⃗�} 

 
        This expression describes the component of )*+��⃗ � caused by the spatial 
       variation of n in the vicinity of P when #$ remains constant.  
 
       n has the same value at all points of the infinitesimal surface that, at P, is 
       perpendicular to the flow of informatons.  So grad(n) is parallel to �⃗ and its 
       magnitude is the increase of the magnitude of n per unit length.   
 
       With   PQ = c.dt ,   grad(n) is determined by:    
 

A)B&(�) = �E − �GHI . �⃗
� =  �E − �G�. &+ . �⃗

� 

 
       The density of the cloud of informatons at Q at the moment t is equal to the 
      density of that flow at P at the moment (t - dt), so: 
 �E − �G&+ =  �(+ − &+) − �(+)

&+ =  − <�
<+  

 
       And 

A)B&(�) = − 1
� . <�

<+ . �⃗
� = − 1

� . <�
<+ . J⃗K 

 
 

       The vector {A)B&(�) × �⃗�} is perpendicular to het plane determined by �⃗  
       and  �⃗�.   So, it lies in the XY-plane and is there perpendicular to �⃗  forming 
       an angle  #$ with  the axis OY.   Taking into account the definition of vectoral 
       product we obtain: 
 

A)B&(�) × �⃗� =  − 1
� . <�

<+ . �� . �'�( #$). (J⃗K × J⃗Y) 
 

       WithTyp hier uw vergelijking. J⃗K × J⃗Y =  −J⃗qK
  

 

A)B&(�) × �⃗� = 1
� . <�

<+ . ��. �'�( #$). J⃗qK 
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       And, taking into account that � = ~
K , we obtain: 

 

A)B&(�) × �⃗� = 1
�L . <�

<+ . ��. �'�( #$). J⃗qK       (13)
     

 
       2.  Next we calculate {�. )*+(�⃗�) }  
 
       This expression is the component of )*+��⃗ � caused by the spatial variation of 
       �⃗� in the vicinity of P when n remains constant.   For the calculation of 
 

)*+(�⃗�) = ∮ �⃗� . &e9:
&8  

 

       with dS  the  encircled area, we calculate ∮ �⃗� . &e9:
 along the closed path 

       PpqQP  that encircles  dS:  dS= PQ.Pp = c.dt.Pp  (fig 4).   (PQ and qp are 
       Parallel to the flow of the informatons,  Qq  and pP are perpendicular to it). 
 
 
                                                           Y 
 
                                              J⃗qK 
                                                                                    �⃗�E                                       
                                                                                          Q    
                                                                          �⃗ 
                                                                                           
                                     �⃗�G                            #$                       X   
                                               �⃗�        P              q  
                                            p           
                                         
                                    Z 

Fig 4 
 
 
 

)*+(�⃗�) = ∮ �⃗� . &e9:
&8 . J⃗qK = ��. �'�[( #$)G)]. Hg − ��. sin [( #$)E]. fI

�. &+. Hg J⃗qK 

 
 

       The characteristic angle of the informatons  at Q  at the moment t is  equal to 
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       the characteristic angle of the informatons at P at the moment (t – dt),  so: 
 
 

)*+(�⃗�) = ∮ �⃗� . &e9:
&8 . J⃗qK = ��. {sin[ #$(+)]. Hg − ��. sin[#$(+ − &+)]}. fI

�. &+. Hg J⃗qK 

 
 
      The rate at which sin(#$) at P changes at the moment t, is: 
 
 <{�'�( #$)}

<+ = �'�{( #$)[+]}  − sin{(#$) [+ − &+]}
&+  

 
       So: 

  

)*+?�⃗�@ = ��. 1
� . <[sin(#$)]

<+ . J⃗qK 

 
                         
       And  with  

� = �
�  

       we finally obtain:
 

 
 

      

�. )*+?�⃗�@ = ��. 1
�L . �. <[sin(#$)]

<+ . J⃗qK          (14)
 

 
 
Substituting the results (13) and (14) in (12) we obtain: 
 
 

)*+��⃗ � = 1
�L . ��. {<�

<+ . �'�( #$) + �. <[sin(#$)]
<+ }. J⃗qK 

 

                = 1
�L . �� . <

<+ [�. sin(#$)]. J⃗qK                 (k�)          
  
 

B.  Now we calculate 
,-�⃗ .
,/  
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We know that[6]: 
 

               <��⃗�<+ = <�
<+ . �⃗� + �. <�⃗�<+  

 
And that: 
 

�⃗� = −��. J⃗W                  and                     <�⃗�<+ = �� . <(#$)
<+ . J⃐�          

 
So: 
 

               <��⃗�<+ = − <�
<+ . ��. J⃗W + �. ��. <(#$)

<+ . J⃐� 

 
Taking into account:  
 J⃗W = �*�( #$). J⃗K − �'�( #$). J⃗qK    and    J⃗� = �'�( #$). J⃗K + �*�( #$). J⃗qK 
 
we obtain:

  

   
<��⃗�<+ = �− <�

<+ . ��. �*�( #$) + �. ��. <(#$)
<+ . �'�( #$)� . J⃗K           

                                                                                    

                   + �<�
<+ . �� . �'�( #$) + �. ��. <(#$)

<+ . �*�( #$)� . J⃗qK             
 
or: 

<��⃗�<+ = ��. �− <
<+ [�. �*�( #$)� . J⃗K + <

<+ [�. sin(#$)]. J⃗qK}      
 
Taking into account (6), we find: 
 

<��⃗�<+ = �� . <
<+ [�. sin(#$)]. J⃗qK                (kU)                                  

 
 
C.  From (15) an (16), we conclude: 

)*+��⃗ � = 1
�L

<��⃗�<+  
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(4)  At a matter free point P of a gravitational field, the spatial variation of ��⃗ � 

and the rate at which ��⃗� is changing are connected by the relation:  

)*+��⃗ � = 1
�L

<��⃗�<+  

 
This is the fourth equation of Maxwell-Heaviside in vacuum.  It is the expression 
of the fact that any change of the product �. �⃗� at a point of a gravitational field 
is related to a spatial variation of the product �. �⃗� in the vicinity of that point. 
 
This relation  implies (theorem of Stokes): In a gravitational field, the rate at 
which the surface integral of ��⃗� over a surface S changes is proportional to the 

line integral of ��⃗ � over its boundery L:  
  

l ��⃗ � . &e9: = 1
�L m <��⃗�<+7

. &89: = 1
�L

<
<+ m��⃗�7

. &89: = 1
�L

<n�<+  

 

The orientation of the surface vector &89:
 is linked to the orientation of the path on 

L by the “rule of the corkscrew”.  n� = ∬ ��⃗�7 . &89:
 is called the “g-information-

flux through S”. 
 
6  THE MAXWELL-HEAVISIDE EQUATIONS 
 
The volume-element at a point P inside a mass continuum is in any case an emitter 
of g-information and, if the mass is moving, also a source of β -information.  
According to the theory of informatons[4],[5]  , the instantaneous value of �� - the 
mass density at P - contributes to the instantaneous value of &'(��⃗� at  that point 

with an amount − ��
�� ;   and the instantaneous value of �⃗� - the mass flow density 

-  contributes to the instantaneous value of )*+��⃗ � at P with an amount −��. �⃗�. 
   
Generally, at a point of a gravitational field - linked to an inertial reference frame 
O - one must take into account the contributions of the local values of 
��(�, �, �; +) and of �⃗�(�, �, �; +) .  This results in the generalization and expansion 
of the laws in a mass free point.  By superposition we obtain: 
 

(1)   At a point P of a gravitational field, the spatial variation of ��⃗� obeys the  
law:    

&'(��⃗� = − ����  
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In integral form:     

n� = 6��⃗�7
. &89: = − 1

�� . � �� .
�

&O
 

 
 

(2)   At a point P of a gravitational field, the spatial variation of ��⃗ � obeys the 
law:   

 &'(��⃗ � = 0 

 
In integral form:      

n0 = 6��⃗ �7
. &89: = 0 

 
 

(3)  At a point P of a gravitational field, the spatial variation of  ��⃗� and the rate 

at which ��⃗ � is changing are connected by the relation:  

)*+��⃗� = − <��⃗ �<+  

 
In integral form:      

l ��⃗� . &e9: = − m <��⃗ �<+7
. &89: = − <

<+ m��⃗ �7
. &89: = − <n0<+  

 
 

(4)  At a point P of a gravitational field, the spatial variation of ��⃗ � and the rate 

at which ��⃗� is changing are connected by the relation:  

)*+��⃗ � = 1
�L

<��⃗�<+ − ��. �⃗� 

 
In integral form:  

l ��⃗ � . &e9: = 1
�L m <��⃗�<+7

. &89: − ��. m�⃗�7
. &89: = 1

�L . <
<+ m��⃗�7

. &89: − ��. m�⃗�7
. &89:

 

 
 
These are the laws of Heaviside-Maxwell or the laws of GEM.   
 
The mathematical deductions confirm that these equations nor their solutions 
indicate an existence of causal links between  ��⃗ � and ��⃗ �. Therefore, we must 
conclude that a gravitational field is a dual entity always having a “field-” and 
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an “induction-” component  simultaneously created by their common sources: 
time-variable masses  and mass flows•.   
 
GEM is consistent with special relativity.  The GEM equations are analogue to 
Maxwell’s equations in EM and it is proved[7]  that these are consistent with special 
special relativity.  Thus, the Maxwell-Heaviside equations are invariant under a 
Lorentz transformation.  In this context it should be noted that the fact that the 
rate at which a material body emits informatons is independent of its velocity[4],[5]  
and completely defined by its rest mass m0, implies that in equation (1) the value 

of  �� =  ���
��   depends on the state of motion – relative to the considered inertial 

reference system - of the mass element dm0.  Indeed in the case of a moving mass 
element,  the Lorentz contraction must be taken into account in the determination 
of dV.  Because a mass flow is made up of moving mass elements its density  �⃗� 
also depends on the inertial reference frame in which it is considered.  This implies 
that in equation (4) the expression of  �⃗� depends on the inertial reference frame. 
 
7  THE GEM EQUATIONS ARE MATHEMATICALLY CONSISTENT 

 
At a point P of  a gravitational field - where �� is the mass density  and �⃗� is the 
density of the mass flow - ��⃗� and  ��⃗ � must obey to the GEM equations (the 
Maxwell-Heaviside equations): 
 

1.  &'(��⃗� = − ����                                                                            
 
                  2.  &'(��⃗ � = 0     
                     

   3.  )*+��⃗� = − <��⃗ �<+                                                                            
                      

                     4.  )*+��⃗ � = 1
�L

<��⃗�<+ − ��. �⃗� 

 
                     

                 And:  ��. �� = �
K� 

                                                           
• On the understanding that the induction-component equals zero if the source of the field is 
time independent. 
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We will prove that these equations are mathematically consistent. 

 

7.1  The case of an object with invariable rest mass 

Because  &'(()*+�⃗) = 0,  it follows from (4) that:        

1
�L

<
<+ ?&'(��⃗�@ − ��. &'(�⃗� = 0      (4�) 

 

Substituting (1) in (4’) gives:        

− 1
�L�� . <��<+ − ��. &'(�⃗� = 0 

 

And with 
�

K��� = ��, we obtain from (4’):  

        

<��<+ + &'(�⃗� = 0       (4") 

 

(4”) is nothing else but  the expression of the law of mass conservation.  Indeed: 

 

       - The rate at which mass is flowing out form a closed surface S  is: 
   

∯ �⃗� . &89:
7      (A) 

 

        -  The rate of the decrease of the mass enclosed by S is ( V is the volume 
        enclosed by S): 
 

− <
<+ � ��&O =  � �− <��<+ � . &O      (�)

��
 

 

       Because of the law of mass conservation (A) = (B),  so 

  

6�⃗� . &89:
7

=  � (− <��<+�
). &O       (5) 
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       Ostrogradsky’s theorem (divergence theorem)  states that 

 

 ∯ �⃗. &89:
7 =∭ &'(�⃗. &O�  

 

       Substituting in (5) gives:  

 

�&'(�⃗� . &O
�

=  �(− <��<+ ). &O
�

 

       It follows:          

&'(�⃗� = − <��<+  

         

 Or:   

<��<+ + &'(�⃗� = 0 

 

We conclude that - in a system with invariable rest mass - the GEM  equations 
of the gravitational field are in line with  the law of mass conservation. 

 

2.  The case of an object with variable rest mass 

Let us consider - relative to an inertial reference frame - an object with rest 
mass  m0  that -  due to intern instability -  during the period ( 0,  Δt)  emits  EM 
radiation.   This implies that that object during that time interval is 
emitting  electromagnetic energy UEM carried by photons (+ gravitomagnetic 
energy• UGEM carried by gravitons) that propagate with the speed of 
light.  Because of that event, from the moment  t = Δt  the rest mass of the particle 

is decreased  with an amount  
�� ¡(��� )

K�   to the value  m0'.   

Consider the surface S enclosing  the object in whole or in part   (V is the volume 
enclosed by S).  At a moment 0 < t < Δt: 

 

       - The rate of the decrease of the enclosed mass is: 

                                                           
• negligible in first approximation 
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− <
<+ � ��&O =  � �− <��<+ � . &O      (A)

��
 

 

       -  �⃗�,  the density of the mass flow out from the enclosed volume at a point P 

       of  S has two components:  

 
                  1. �⃗�� describing the outflow of massive mass; 

                  2. �⃗�L  describing the outflow of mass in the form of energy.  If we 

                       represent the density of that energy flow by 8⃗:   �⃗�L = 7⃗
K� 

       So:  

�⃗� = �⃗�� + �⃗�L = �⃗�� + 8⃗
�L 

, 

       and  the rate at which mass-energy is flowing out from the  closed  surface S 

       is:         

∯ �⃗� . &89:
7      (B) 

 

(A) = (B)  because of the law of mass-energy conservation,  so 

6�⃗� . &89:
7

=  � (− <��<+�
). &O 

  and           

&'(�⃗� = − <��<+        *)       <��<+ + &'(�⃗� = 0 

 

We conclude that in the case of a system with variable rest mass,  the GEM 
equations of the gravitational field are in line  with  the law of mass-energy 
conservation. 
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8  GRAVITATIONAL WAVES 

 

8.1  The wave equation 
 
In free space  -  where �� = �⃗� = 0  -  the GEM equations are: 

                   
1.  &'(��⃗� = 0                                                                                      

                   
2.  &'(��⃗ � = 0                                                                                       

                    

3.  )*+��⃗� = − <��⃗ �<+                                                                             
                   

     4.  )*+��⃗ � = 1
�L

<��⃗�<+                                                                               
 

To attempt a solution of a group of simultaneous equations, it is usually a good 
plan to separate the various functions of space to arrive at equations that give the 
distributions of each. 

It follows from (3):     

)*+?)*+��⃗�@ = −)*+ i<��⃗ �<+ j      (3�) 
  

Because[6] )*+()*+�⃗) = A)B&(&'(�⃗) − £L�⃗,   where £Lis the Laplacian,   

 

(3’) leads to:                                              

A)B&(&'(��⃗�) − £L��⃗� = −)*+(<��⃗ �<+ ) = − <
<+ ()*+��⃗ �) 

 

And taking into account (1) and (4):   

£L��⃗� = 1
�L . <L��⃗�<+L         (5) 
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This is the general form of the wave equation.  This form applies as well to the g-
induction, as is readily shown by taking first the rotor of (4) and then substituting 
(2) and (3): 

£L��⃗ � = 1
�L . <L��⃗ �<+L         (5�) 

            

Solutions of this equation describe how disturbances of the gravitational field 
propagate as waves  with speed c. 

 

To illustrate this we consider the special case of space variation in one dimension 
only.   If we take the x-component of (5) and have space variations only in the z-
direction, the equation becomes simply: 

 

<L��W<�L = 1
�L . <L��W<+L  

 

This equation has a general solution of the form 

 

��W = ¤� ¥+ − �
�¦ + ¤L ¥+ + �

�¦      (6) 

 

The first term of (6) represents the wave or function  f1  traveling with velocity c 
and unchanged form in the positive z-direction, the second term represents the 
wave or function f2  traveling with velocity c and unchanging form in the negative 
z-direction. 

 

8.2  Gravitational wave generated by an object with variable rest mass 

Another phenomenon that is the source of a gravitational wave is the conversion 
of rest mass into energy (what per example happens in the case of radioactive 
processes).  To illustrate this, let us - relative to an inertial reference frame  - 
consider a particle with rest mass  m0  that - due to intern instability -  during the 
period  (0,  Δt)  emits EM radiation.   
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This implies that that particle during that time interval  is emitting electromagnetic 
energy UEM carried by photons (and gravitational energy UGEM

•  carried by 
gravitons) that propagate with the speed of light.   Between the moment  t = 0  and 
the moment  t  = Δt,  the rest mass of the particle is, because of this 

event,  decreasing with an amount   
�� (¡��� )

K�   from the value m0  to the 

value  m0'.  Because the gravitational field is determined by the rest mass, this 
implies that  if  t < 0   the source of  the gravitational field of the particle is  m0  and 
for t > Δt  it is  m0'.   It follows that at the moment  t  the gravitational field at a 
point  P  at a distance   r>c.t   is proportional to  m0 ,  and at a point at a distance  r 
< c.(t - Δt)   to  m0’.   

During the period (t, t+Δt) the gravitational field at a point at a distance r = 
c.t  changes from the situation where it is determined by m0 to the situation where 
it is determined by m0’ .  So, the conversion of rest mass of an object into radiation 
is the cause of a kink in the gravitational field of that object,  a kink that with the 
speed of light - together with  the emitted radiation - propagates  out of the object.  

We can conclude that the conversion of (a part of)  the rest mass of an object into 
radiation goes along with the emission by that object of a gravitational  wave. 

The effect of the decrease - during the time interval (0, Δt)  - of the rest mass of a 
point mass on the magnitude of its g-field Eg  at the point P at a distance  r  is 
shown in the plot of fig. 5.   
 
       1. Until the moment  + = ¨

K,  the effect of the conversion of rest mass into 

radiation has not yet reached P.  So, during the period (0, ¨
K) the quantity of mass-

energy enclosed by an hypothetical sphere with radius r centered on the particle 
is still m0  (the remaining part of the rest mass + all the radiation that during the 
mentioned period has arisen from the conversion of rest mass).  From the first 
GEM equation it follows: 
  

�� = ©�4ª��. )L 

 
       2. From the moment  + = ¨

K + #+,  the radiation generated by the conversion 

of rest mass has left the space enclosed by the hypothetical sphere with radius r, 
that from that moment only contains the remaining rest mass m0’ . From the first 
GEM equation it follows:  
 

                                                           
•  negligible in first approximation 
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�� = ©�′
4ª��. )L 

 
       3. During the time interval (

¨
K , ¨

K + #+), the mass-energy enclosed by the 

hypothetical sphere with radius r is decreasing (not necessary linearly) because 
mass-energy flows out in the form of radiation.  So, during that period �� at P  is 
decreasing. 
 
 

                                  E� 

                                                         (m0) 

                                                                                                                   (m0
’) 

 

                                   O                                                                                                            t 

                                                                                    
¬
­       

¬
­ + Δt 

Fig 5 

 

8.3 Gravitational wave generated by a harmonically oscillating particle 

 

In fig 6 we consider a point mass m that harmonically oscillates, with frequency          

� = ®
L.¯,   around the origin of the inertial reference frame O.   At the moment t 

it passes at P1.  We suppose that the speed of the charge is always much smaller 
than the speed of light and that it is described by: 

 ((+) = O. �*� ° + 
 

The elongation z(t) and the acceleration a(t) are then expressed as: 
 

�(+) = �
® . �*�( °+ − ¯

L)        and       B(+) = °. O. �*�( °+ + ¯
L) 

 
We restrict our considerations about the gravitational field of m to points P that 
are sufficiently far away from the origin O.  Under that condition we can posit 

that the fluctuation of the length of the vector H�H9⎯: = )⃗� is very small relative to 
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the length of the time-independent position vector )⃗,  that defines the position of 
P relative to the origin O.  In other words: we assume that the amplitude of the 
oscillation is very small relative to the distances between the origin and the points 
P on which we focus. 
 

 

 

                                                                                    J⃗K                                                      
                                     Z                                                    J⃗²         �⃗                  

                                                                                             P          

                                        (⃗                                 )⃗� 

                                                                                                  )⃗                             J⃗qK         

                                                      P1        m                                                           

                                                                 $ 

                                                        O                                                                               Y 

                                                       φ 

                            X                                       

Fig 6 

 
In the framework of the theory of informatons[4],[5] it is shown that, starting from 
the complex quantity O³ = O. J´.� -  representing ((+) -  �³�qK, the complex 

representation of the time dependent part of the transversal component of ��⃗� and 

�³�², the complex representation of  ��⃗ �, at  P are: 
 

�³�qK = − ©. O³
4ª . Jµ´.¶.¨ . ( 1

��. �. )L + ·. °. ��) ). �'� $ 

 
                                            

�³�² = − ��. ©. O³
4ª . Jµ´.¶.¨ . ( 1

)L + ·. ¸
) ). �'� $              

 

where  ̧ = ®
K   the phase constant.    Note that �³�² = -³.¹º

K . 

 
Thus, relative to O,   ��²  and the time dependent part of  ��qK  are expressed as 
functions of the space and time coordinates as: 
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��²(), $; +) = ��qK(), $; +)
�

= ��. ©. O. �'� $ . √1 + ¸L)L
4ª)L . �*�( °+ − ¸) + n + ª) 

 
  with   +An = ¸). 
 
So, an harmonically oscillating particle emits a transversal “gravitomagnetic” 
wave that propagates out of the mass  with the speed of light:  
 
In points at a great distance from the oscillating mass, specifically there where             

) >> �
¶ = K

®,   this expression asymptotically equals:  

 

��² = ��qK� = ��. ¸. ©. O. �'� $
4ª) . �'�( °+ − ¸))

= ��. ©. °. O. �'� $
4ª�) . �'�( °+ − ¸)) 

                                         

         = − ��. ©. B ¥+ − )�¦ . �'� $
4ª�)                                                                  

 
The intensity of the “far gravitational field” is inversely proportional to r, and is 
determined by the component of the acceleration of m, that is perpendicular to the 
direction of J⃗K. 
 
We can conclude that the existence of gravitational waves is embedded in the 
GEM description of gravity.  According to the theory of informatons a 
gravitational wave is the macroscopic manifestation of the fact that the “train” of 
informatons emitted by an oscillating source and travelling with the speed of light 
in a certain direction is a spatial sequence of informatons whose characteristic 
angle is harmonically fluctuating along the “train” what implies that the 
component of their g-index perpendicular to their velocity cr  and their β-index 
fluctuate harmonically in space. Gravitational waves transport gravitational 
energy because some of the informatons that constitute the “train” are carriers of 
energy.  They are called gravitons.  However, the energy quantum carried by a  
graviton is small in such a way that it is very difficult to give experimental 
evidence of its existence.    
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